ARCHITECTURE
Group 3
Liam Martin

Aaliya Williams
Lucy Crabtree
Kai Nichol
Sammy Hori
Tim Gorst
Zac Ribbins

Introduction To System Architecture:
A key part of visualising the system of the game was done via Unified Modelling Language

(UML) and PlantUML due to its robust and straightforward nature, as this allowed for
detailed diagrams of specific components of the system, acting as a basis for the
architecture. For example, the sequence diagram aided with providing a rigid structure for
how the system should behave based on user input, this aided in the subsequent creation of
the class diagram and further implementation of the code.

Class Responsibility Collaborator (CRC) Cards

One of the first courses of action was to determine what classes were needed for the game,
so we made CRC cards to help figure out what classes are needed . Each card shows what
actions the class must be able to perform and what other classes that class can interact with.

The CRC cards (Figure 5) and our original class diagram (Figure 4) were made after the
supervisor meeting and were created with the user and system requirements in mind and
how each one that was set out would be achieved. This allowed us to get a broad idea of
how the system should work.

Class Diagram

As the it was predetermined that an Object Oriented Programing (OOP) would be used
during implementation, after creating classes, determining their roles and how they interact
with other classes, we created a UML class diagram using Plantuml to show the classes that
will be included in the implementation, the relationships between the classes; including
inheritance between parent-child classes in conjunction with the key attributes and methods
contained within each class.

https://eng1-team3-website.vercel.app/documents
https://eng1-team3-website.vercel.app/documents

(©) characterScreen

oparent: HeslingtonHustle
oshow(): void

¥ characterScreen
parent 1
1

(€) HeslingtonHustie

parent

L 2

endScreen|

preferences
1

oloadingScreen: LoadingScreen
opreferencesScreen: PreferencesScreen
omenuScreen: MenuScreen
omainscreen: Mainscreen

oendScreen: EndScreen

opreferences: AppPreferences
ocharacterscreen: CharacterScreen

ocreate(): void
achangescreen(int): void

1? 1 1]

(© Endscreen

(€) AppPreferences

oparent: HeslingtonHustle

oshowl): void

o fectsEnabl): void
osetMusicEnabled{boolean): void
osetMusicVolume(float): void
osetSoundVolume(float): void

play
1

© Play
nselectedCharacter: String

oloadMap(String): void
achangeMapi(String): void

achievements
1

(©) Achievements

nsetPlayerPosition(): void

1 o score: float
. o description” String
phl’ o achieved: boolean

(©) Player
aspeed: float
ovelocity: Vector2
oupdate(float): void
ogetTransition({float, float): void
ogetActivity(float, float): void

© Activity
otimeNeeded: LocalTime
oenergyNeeded: int
ereward: int

ocreateActivities(): void
ecompleteActivity(String): void .
acountCompletedActivities{}: Map<5String, Integer>

(©) camestats

aenergy: int
oday: int

oscore: int
atime: LocalTime

aincreaseTime{LocalTime): void
odecreaseEnergy(int): void

o newDay(): void
oincreasescore(int): void

New Class Diagram (Available on website)

Linking the Requirements to the Architecture
The following table contains individual classes, a brief description of said class and how it

links to the pre established requirements:

CLASS DESCRIPTION REQUIREMENT LINK

https://eng1-team3-website.vercel.app/updated_documents

EndScreen

The EndScreen class is the
class that represents the
screen the player will
receive at the end of the
game, it will display the final
score they got using the
show() method.

UR_SCORE,
FR_GAME_END, and
FR_GAME_END_STATS

PreferencesScreen The PreferencesScreen UR_PREFERENCES
class is the class that
represents the preferences
menu section of the game, it
allows the player to adjust
game settings using the
show() method.
Player The Player class is the class | UR_MOVEMENT,
the player of the game will UR_CONTROLS,
use while they play the FR_CHARACTER_MOVEM
game. The player moves ENT,
using the WASD and the FR_CHARACTER_COLLISI
arrow keys, this is done ON and
through the keyUp() and FR_CHARACTER _INTERA
keyDown() methods. They CTION
will be able to interact with
the map through special tile
blocks allowing the player to
perform activities such as
sleeping and studying.
LeaderboardScreen The LeaderboardScreen UR_LEADERSHIP and
class allows the player to FR_LEADERBOARD
see the scores and rankings
of the top ten players.
Activity The Activity class is the UR_OBJECTIVE and

class that the player will
interact with to perform
activities around the map
they interact via the
completeActivity() method,
there are four activities that
the player can perform:
study, relax, eat, and sleep
each activity will progress
time and expend energy by

UR_CHOICES

a different amount. It tracks
the number of activities
completed using the
countCompletedActivities()
method.

GameStats

The GameStats class is the
class that stores all the
game counters such as
energy, score, day, and
time. Each score is also
updated in the class each
time an activity is
completed.

FR_STATS,
FR_STATS_UPDATE,
FR_STATS_RESET and
FR_STATS_SHOW

AppPreferences

The AppPreferences call will
allow the players of the
game to control the volume
of the sounds he hears in
the game such as music
and other sound effects

UR_PREFENCES

Score

The Score class keeps track
of the points the player
achieved and allocates them
a score based on the
standard British university
grading system, i.e. 40-49
for a ‘Third Class’, 50-59 for
a ‘Second Class’ and so
forth.

UR_SCORE and
FR_STATS

Achievements

The Achievements class
stores the streaks the player
has achieved throughout the
game, for example, the
achievement:
‘Fitness_Fanatic’ which
players are rewarded with if
they engaged in physical
activity at least 3 times in
the week.

UR_ACHIEVEMENTS,
FR_ACTIVITY_COUNTER
and
FR_ACTIVITY_STREAK

Sequence Diagram

A sequence diagram was also created to show the expected interactions between the
objects in the system during runtime. It was created using Plantuml and shows the expected
flow between the user doing an action and the effect it has on the game; these sequences
should achieve the goals that were set out in the user and system requirements section.

User Input Player | Play | | Activity GamesStats | | AppPreferences

Press the movement keys

Moves Character

Press the movement key at a transition point

The map changes to ancther location

Press the interact key at an activity point

Perform the interaction

Progress time and increase counter

Press the interact key at the end day activity point

Perform the interaction

Progress time to the next day

Press the movement keys at a collision point

The character is blocked from moving further

Press the settings key

Open the preferences menu

‘User Input | Player | | Play A:tivn:y‘ ‘ GameStats | | AppPreferences

User
The user can move around the map using the movement keys (WASD or arrows), and can
interact with the map at the activity points.

Input
Depending on the input from the user a different method will be called, for example moving
the player, transitioning the maps, and opening the preferences menu.

Activities

Every time an activity is completed the game should be progressed in this case this will be
increasing the time and counter by a varying amount depending on what activity was
completed.

Requirements completed

- The ‘Press the movement keys’ sequence fulfils the UR_MOVEMENT,
UR_CONTROLS, and FR_CHARACTER_MOVEMENT requirements.

- The ‘Press the movement key at a transition point’ sequence fulfils the
UR_MOVEMENT, FR_CHARACTER_INTERACTION, and
FR_CHARACTER_MOVEMENT requirements.

- The ‘Press the interact key at an activity point’ sequence fulfils the UR_CHOICES
and FR_CHARACTER_INTERACTION requirements.

- The ‘Press the movement key at a collision point’ sequence fulfils the
UR_MOVEMENT, FR_CHARACTER_INTERACTION, and
FR_CHARACTER_MOVEMENT requirements.

- The ‘Press the settings key’ sequence fulfils the UR_PREFERENCES requirement.

Justification of System Architecture
The architectural style used followed an Object Oriented Programming approach as it was

deemed the best fit in order to meet the preexisting requirements. Using OOP allowed for
inheritance and encapsulation, two characteristics that were used extensively during the
implementation of the code and this can be seen via the class diagram, detailing the class
hierarchy of the system and thus the inherited methods within these specific classes.

Evolution of the System:
Once development began and our game began to evolve, overtime, we made a few

adjustments to our classes set out before in the CRC cards and the original class diagram.
Our biggest adjustment being to convert the GameScreen class into multiple separate
classes, each with a singular responsibility. This change allowed for code that is easier to
change, test, extend, and understand. An example of one of the new screen classes that
were added is the EndScreen class which is responsible for showing the user the score they
achieved once they reached the end of the game.

With the introduction of the second assessment brief, there was a need to change certain
components of the system as thus, these changes occurred in the form of updating the class
diagram to meet the new requirements identified as well as reflecting the changes made to
reflect the code itself, in particular, classes HighScoreEntryScreen and LeaderBoardScreen
were added. Accompanying these changes, alterations were made to the structure of the
ActivityMapObiject class include the dynamic accessing of the type, length of each activity
and the effects on the stats overall, improving the structure and quality of the code. Another
significant improvement involved modifying the way the different activities and their effects
on player stats were stored as this was originally in the form of a hash mapping that was
limited to three activities; no longer meeting the requirements.

One final noteworthy addition involved incorporating the InstructionScreen class in which
sets the scene for the player, in combination with explaining the aim of the game and
controls needed in order to play. This was added as not only a stylistic improvement to the
game but also to maintain common gaming convention.

In general, as the time progressed, a combination of major and minor changes were made to
the architecture of the system in order to adhere to the requirements, the product brief and
overall make the system more robust, with the aim of keeping the gameplay simple and
enjoyable for the player.

References:

[1] C. Piper, eng1. 2024. Accessed: May 06, 2024. [Figure 4]. Available:
https://charliepiper.github.io/documents

[2] M. Richards and N. Ford, Fundamentals of Software Architecture. Ascent Audio, 2020.

