Continuous Integration
Group 3

Liam Martin
Aaliya Williams
Lucy Crabtree
Kai Nichol
Sammy Hori
Tim Gorst
Zac Ribbins

Continuous Integration Methods:

Our project employs robust Continuous Integration (Cl) methods to ensure smooth
collaboration and efficient development. Firstly, we utilise Git as our version control
system, enabling seamless code management and facilitating the Cl process. This allows
us to track changes, collaborate effectively, and maintain a history of our codebase.

Central to our Cl strategy is our GitHub repository, where all our code resides. This
repository is meticulously organised, ensuring clarity and ease of navigation for all team
members. We integrate project management tools such as Trello, which aids in task
tracking and issue management. This integration streamlines our development
workflow, allowing us to prioritise tasks and address issues promptly.

In line with Cl best practices, we adhere to a frequent integration schedule. Code is
integrated into the main branch after the completion of each task from our Trello
board. This ensures that our main branch remains up-to-date and reflective of our

current progress.

Features To Implement Bugs Features To Adjust Completed

Controls/help screen (how to move, Collisions Implement streaks/achievements Allow the player to perform a
introduction to game) for consistent activities throughout limited set of activities each day.
+ Addacard =] the week (e.g., walking, library
+ Add acard =] visits, feeding ducks). Ensure the avatar studies enough
® o1 for exams by studying at least once
every day.

+ Addacard

window size is skewed (macbook)
® 01 @1

Ensure that missing a day of
studying can be compensated by

studying more on other days, but
only once per game.

® @1

Lists from our Trello Board

Effective communication is essential for successful collaboration, which is why we use
collaborative tools like Discord and WhatsApp. These platforms provide real-time
updates and facilitate communication among team members, fostering a collaborative
environment conducive to productivity.

To maintain a healthy main branch, we follow best practices such as avoiding large
commits and utilising feature branches for development. These practices promote code
cleanliness and minimise conflicts, ensuring smooth integration and collaboration.
Throughout the project, we've logged approximately 400 commits, reflecting our team's
active engagement and progress.

Continuous Integration Infrastructure

Our Continuous Integration (Cl) infrastructure is built on a foundation of automation
and quality assurance tools, ensuring the reliability and quality of our codebase. At the
heart of our Cl process is GitHub Actions, which automates our build process and
executes various checks on each commit.

Using GitHub Actions, we've configured workflows that automate the build process
using Gradle, our chosen build automation tool. This streamlines our development
workflow, allowing developers to focus on coding while ensuring consistent and reliable
builds.

In addition to build automation, we employ Qodana for quality assurance. Qodana
assesses our code for functionality and readability, ensuring that it meets our minimum
standards and integrates smoothly into the project. Reports generated by Qodana are
automatically shared with the team via Discord, enabling us to address any issues
promptly and maintain code quality.

Our Cl pipeline architecture consists of several stages, including build, test, and deploy.
Each stage is meticulously configured to execute specific tasks, such as compiling code,
running tests, and deploying to staging environments. Monitoring and notification
mechanisms, such as email alerts and Discord bots, keep the team informed about
build and test results in real-time.

° Review required Add your review
At least 2 approving reviews are required by reviewers with write access. Learn more about pull request reviews
Some checks were not successful Hide all checks
1 failing, 3 successful, and 1 neutral checks
X Java Cl with Gradle / build (pull_request) Failing after 28s Details
+ () Qodana/ qodana (pull_request) Successfulin 2m Details
v . Qodana / godana (push) Successful in 2m Details

v () Java CI with Gradle / dependency-submission (pull_request) Successful in 20s Details

[] Q Qodana / Qodana Community for JVM (push) — 9 new problems found by Qodana Community for ... Details

° Merging is blocked

Merging can be performed automatically with 2 approving reviews.

Merge pull request - YYou can also open this in GitHub Desktop or view command line

Automated checks when PRs are created

In summary, our Clinfrastructure is designed to automate repetitive tasks, ensure code
quality, and facilitate efficient collaboration among team members. By leveraging
automation and quality assurance tools, we've created a streamlined development
workflow that promotes productivity and reliability throughout the project lifecycle.

