SOFTWARE TESTING
REPORT
Group 3

Liam Martin

Aaliya Williams
Lucy Crabtree
Kai Nichol
Sammy Hori
Tim Gorst
Zac Ribbins



A) Testing Methods and Approaches

In our project, we adopted a blend of automated and manual testing methodologies tailored
to our system's specific needs. This approach aimed to ensure thorough coverage while
maintaining a balance between efficiency and accuracy.

Automated Testing

Automated testing formed a critical aspect of our quality assurance strategy, ensuring the
reliability and robustness of our software. We meticulously crafted and executed 49
automated tests, covering various aspects of the system's functionality. These tests were
organised into different packages and classes, facilitating targeted validation of specific
modules and functionalities.

Initially, we established unit tests primarily to support continuous integration, ensuring that
inadvertent code changes didn't compromise existing functionality. These tests were
automated using GitHub Actions, triggered by commits to the master branch or pull requests.
While adjustments were occasionally necessary to accommodate code changes, these tests
served as a crucial safety net against regression.

Certain unit tests were designed to directly address functional requirements, such as
PlayerMovementUnitTests. These tests partially addressed UR_CONTROLS and
FR_CHARACTER_MOVEMENT by verifying correct player velocity behaviour when specific
keys were pressed and released. This approach helped ensure that the codebase adhered
to specified requirements from the outset, promoting robustness and clarity in
implementation.

Manual Testing

Recognising the dynamic nature of our development process, we extensively employed
manual testing. This involved crafting a range of manual tests to cover all functional
requirements of the game. These tests were regularly executed on the master branch to
monitor progress and were pivotal in validating changes made in feature branches.

Manual testing provided invaluable insights by ensuring that users experienced expected
outcomes firsthand, transcending mere code-based validation. This approach guaranteed
the integrity and usability of the system from an end-user perspective.Also, manual tests for
unimplemented features served as an informal TDD mechanism, delineating expected
behaviours and aiding in the validation of forthcoming functionalities.



B) Test Report

Our testing efforts encompassed a variety of unit and manual tests aimed at validating both
continuous integration and feature development aspects. Unit tests were employed to verify
core functionalities and were automatically executed through GitHub actions. Manual tests,
on the other hand, were extensively used to ensure comprehensive coverage of functional
requirements and validate user experiences.

The test coverage report, available at https://sammyhori.github.io/eng1-part-2-website/,
showcases our automated testing efforts.

Test Summary

49 0 0 0.345s 100%
tests failures ignored duration successful

Packages Classes
Package Tests Failures Ignored Duration Success rate
com.eng].gdxtesting 30 0 0 0.283s 100%
com.eng1.gdxtesting.AssetTests 11 0 0 0.030s 100%
com.engl.gdxtesting.PlayerClassUnitTests 8 0 0 0.032s 100%

Test Summary

49 0 0 0.345s 100%
tests failures ignored duration
successful

Packages Classes

Class Tests Failures Ignored Duration
0 0.048s
0.007s
0.009s
0.219s
0.021s
0.007s
0.002s

com.eng1.gdxtesting. nitTests 5

com.eng1.gdxtesting.ScoreUnitTests 10

com.eng1.gdxtesting, InitTests 5

com.eng1.gdxtesting,StatisticsUnitTests 10
com.eng1.gdxtesting.AssetTests JnitTests 5

© oo oo oo o
©oooooo

5
com.eng1.gdutesting,AssetTests.SkinAssetUnitTests 1
8

com.eng1.gdxtesting.PlayerClassUnitTest JnitTests 0.032s

Our automated testing regimen played a pivotal role in our quality assurance strategy,
ensuring the robustness and reliability of our software project. A total of 49 automated tests
were created and executed, covering diverse aspects of the system's functionality. These
tests were organised into different packages and classes, facilitating targeted validation of
specific modules and functionalities.

All automated tests passed successfully, affirming the efficacy of our testing efforts and the
stability of the codebase. The comprehensive test suite encompassed various categories,
including asset validation, player class functionalities, sound and music preferences, score
calculation, statistics management, and player movement behaviours.

The automated testing process demonstrated efficiency, with a total execution duration of
0.345 seconds. This rapid turnaround time ensured timely feedback on code changes,
facilitating continuous integration and deployment practices. Moreover, the absence of test


https://sammyhori.github.io/eng1-part-2-website/

failures or ignored tests underscores the reliability and consistency of the automated testing
framework.

Automated testing played a crucial role in mitigating the risk of regression and ensuring the
integrity of the codebase throughout the development lifecycle. By systematically validating
code changes against predefined test cases, automated testing bolstered confidence in the
software's functionality and helped maintain high-quality assurance standards.

While unit tests contributed to the stability of our codebase and provided reassurance
against inadvertent regressions, manual tests were indispensable in validating the
user-facing aspects of the application. The decision to prioritise manual testing was validated
by the frequent and significant changes observed in the codebase, necessitating a flexible
and user-centric approach to testing.

We conducted a comprehensive series of manual tests covering every aspect outlined in our
requirements document. Each test was carefully crafted to simulate user interactions and
system behaviours, providing invaluable insights into the integrity and functionality of our
software.

Our testing process involved executing a diverse array of scenarios, ranging from basic user
interactions to complex system functionalities. Test cases were meticulously designed to
cover all functional requirements, ensuring comprehensive validation across various aspects
of the game:

e Game Start and Quit: We validated the system's ability to initiate and terminate the
game from the menu screen, confirming that users could seamlessly navigate these
fundamental functionalities.

e Character Interactions: We tested the user's ability to interact with the game
environment, including character movement, collision detection, and interaction with
map elements such as buildings and objects.

e Game Progression and End Conditions: We verified that the game progressed
logically according to predefined conditions, such as character actions leading to
game completion or termination, ensuring a coherent and engaging gameplay
experience.

e Stats Tracking and Updates: We examined the system's capacity to accurately track
and update player statistics in response to in-game actions, facilitating meaningful
progression and feedback for users.

e Map Navigation and Transition: We assessed the functionality of map navigation and
transition between different game environments, ensuring smooth transitions and
coherent spatial navigation for users.

In conclusion, our hybrid testing approach, comprising a blend of automated unit tests and
manual tests, was well-suited to the dynamic nature of our project. While automated unit
tests provided rapid validation of code changes and ensured the stability of the codebase,
manual tests offered a more comprehensive assessment of user experiences and functional
requirements. Moving forward, continued vigilance in testing, coupled with a focus on
addressing any identified failures, will be paramount in delivering a high-quality and
user-centric product.


https://eng1-team3-website.vercel.app/testing

